Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.028
Filtrar
1.
J Plant Physiol ; 294: 154195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377939

RESUMO

We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.


Assuntos
Fumarato Hidratase , Malato Desidrogenase , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Fumarato Hidratase/genética , Ácidos Tricarboxílicos/metabolismo , Ciclo do Ácido Cítrico , Plantas/genética , Plantas/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Metilação de DNA/genética , Respiração
2.
Viruses ; 15(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896861

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a specific pathogen of Bombyx mori that can significantly impede agricultural development. Accumulating evidence indicates that the viral proliferation in the host requires an ample supply of energy. However, the correlative reports of baculovirus are deficient, especially on the acetylation modification of tricarboxylic acid cycle (TCA cycle) metabolic enzymes. Our recent quantitative analysis of protein acetylome revealed that mitochondrial aconitase (ACO2) could be modified by (de)acetylation at lysine 56 (K56) during the BmNPV infection; however, the underlying mechanism is yet unknown. In order to understand this regulatory mechanism, the modification site K56 was mutated to arginine (Lys56Arg; K56R) to mimic deacetylated lysine. The results showed that mimic deacetylated mitochondrial ACO2 restricted enzymatic activity. Although the ATP production was enhanced after viral infection, K56 deacetylation of ACO2 suppressed BmN cellular ATP levels and mitochondrial membrane potential by affecting citrate synthase and isocitrate dehydrogenase activities compared with wild-type ACO2. Furthermore, the deacetylation of exogenous ACO2 lowered BmNPV replication and generation of progeny viruses. In summary, our study on ACO2 revealed the potential mechanism underlying WT ACO2 promotes the proliferation of BmNPV and K56 deacetylation of ACO2 eliminates this promotional effect, which might provide novel insights for developing antiviral strategies.


Assuntos
Aconitato Hidratase , Bombyx , Animais , Aconitato Hidratase/metabolismo , Lisina/metabolismo , Linhagem Celular , Trifosfato de Adenosina/metabolismo
3.
ACS Synth Biol ; 12(10): 2887-2896, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37467114

RESUMO

Fe-S clusters are essential cofactors mediating electron transfer in respiratory and metabolic networks. However, obtaining active [4Fe-4S] proteins with heterologous expression is challenging due to (i) the requirements for [4Fe-4S] cluster assembly, (ii) the O2 lability of [4Fe-4S] clusters, and (iii) copurification of undesired proteins (e.g., ferredoxins). Here, we established a facile and efficient protocol to express mature [4Fe-4S] proteins in the PURE system under aerobic conditions. An enzyme aconitase and thermophilic ferredoxin were selected as model [4Fe-4S] proteins for functional verification. We first reconstituted the SUF system in vitro via a stepwise manner using the recombinant SUF subunits (SufABCDSE) individually purified from E. coli. Later, the incorporation of recombinant SUF helper proteins into the PURE system enabled mRNA translation-coupled [4Fe-4S] cluster assembly under the O2-depleted conditions. To overcome the O2 lability of [4Fe-4S] Fe-S clusters, an O2-scavenging enzyme cascade was incorporated, which begins with formate oxidation by formate dehydrogenase for NADH regeneration. Later, NADH is consumed by flavin reductase for FADH2 regeneration. Finally, bifunctional flavin reductase, along with catalase, removes O2 from the reaction while supplying FADH2 to the SufBC2D complex. These amendments enabled a one-pot, two-step synthesis of mature [4Fe-4S] proteins under aerobic conditions, yielding holo-aconitase with a maximum concentration of ∼0.15 mg/mL. This renovated system greatly expands the potential of the PURE system, paving the way for the future reconstruction of redox-active synthetic cells and enhanced cell-free biocatalysis.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Escherichia coli/metabolismo , NAD/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Aconitato Hidratase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Flavinas/metabolismo
4.
Adv Biol (Weinh) ; 7(7): e2300095, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37132059

RESUMO

Certain metabolic interventions such as caloric restriction, fasting, exercise, and a ketogenic diet extend lifespan and/or health span. However, their benefits are limited and their connections to the underlying mechanisms of aging are not fully clear. Here, these connections are explored in terms of the tricarboxylic acid (TCA) cycle (Krebs cycle, citric acid cycle) to suggest reasons for the loss of effectiveness and ways of overcoming it. Specifically, the metabolic interventions deplete acetate and likely reduce the conversion of oxaloacetate to aspartate, thereby inhibiting the mammalian target of rapamycin (mTOR) and upregulating autophagy. Synthesis of glutathione may provide a high-capacity sink for amine groups, facilitating autophagy, and prevent buildup of alpha-ketoglutarate, supporting stem cell maintenance. Metabolic interventions also prevent the accumulation of succinate, thereby slowing DNA hypermethylation, facilitating the repair of DNA double-strand breaks, reducing inflammatory and hypoxic signaling, and lowering reliance on glycolysis. In part through these mechanisms, metabolic interventions may decelerate aging, extending lifespan. Conversely, with overnutrition or oxidative stress, these processes function in reverse, accelerating aging and impairing longevity. Progressive damage to aconitase, inhibition of succinate dehydrogenase, and downregulation of hypoxia-inducible factor-1α, and phosphoenolpyruvate carboxykinase (PEPCK) emerge as potentially modifiable reasons for the loss of effectiveness of metabolic interventions.


Assuntos
Aconitato Hidratase , Ciclo do Ácido Cítrico , Aconitato Hidratase/metabolismo , Glicólise , DNA/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108831

RESUMO

This paper presents an analysis of the regulation activity of the partially purified preparations of cellular aconitate hydratase (AH) on the yeast Yarrowia lipolytica cultivated at extreme pH. As a result of purification, enzyme preparations were obtained from cells grown on media at pH 4.0, 5.5, and 9.0, purified by 48-, 46-, and 51-fold and having a specific activity of 0.43, 0.55 and 0.36 E/mg protein, respectively. The kinetic parameters of preparations from cells cultured at extreme pH demonstrated: (1) an increase in the affinity for citrate and isocitrate; and (2) a shift in the pH optima to the acidic and alkaline side in accordance with the modulation of the medium pH. The regulatory properties of the enzyme from cells subjected to alkaline stress showed increased sensitivity to Fe2+ ions and high peroxide resistance. Reduced glutathione (GSH) stimulated AH, while oxidized glutathione (GSSG) inhibited AH. A more pronounced effect of both GSH and GSSG was noted for the enzyme obtained from cells grown at pH 5.5. The data obtained provide new approaches to the use of Y. lipolytica as a model of eukaryotic cells demonstrating the development of a stress-induced pathology and to conducting a detailed analysis of enzymatic activity for its correction.


Assuntos
Aconitato Hidratase , Yarrowia , Aconitato Hidratase/metabolismo , Oxirredução , Concentração de Íons de Hidrogênio
8.
Free Radic Biol Med ; 197: 71-84, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738801

RESUMO

Mitochondrial aconitase (ACO2) has been postulated as a redox sensor in the tricarboxylic acid cycle. Its high sensitivity towards reactive oxygen and nitrogen species is due to its particularly labile [4Fe-4S]2+ prosthetic group which yields an inactive [3Fe-4S]+ cluster upon oxidation. Moreover, ACO2 was found as a main oxidant target during aging and in pathologies where mitochondrial dysfunction is implied. Herein, we report the expression and characterization of recombinant human ACO2 and its interaction with frataxin (FXN), a protein that participates in the de novo biosynthesis of Fe-S clusters. A high yield of pure ACO2 (≥99%, 22 ± 2 U/mg) was obtained and kinetic parameters for citrate, isocitrate, and cis-aconitate were determined. Superoxide, carbonate radical, peroxynitrite, and hydrogen peroxide reacted with ACO2 with second-order rate constants of 108, 108, 105, and 102 M-1 s-1, respectively. Temperature-induced unfolding assessed by tryptophan fluorescence of ACO2 resulted in apparent melting temperatures of 51.1 ± 0.5 and 43.6 ± 0.2 °C for [4Fe-4S]2+ and [3Fe-4S]+ states of ACO2, sustaining lower thermal stability upon cluster oxidation. Differences in protein dynamics produced by the Fe-S cluster redox state were addressed by molecular dynamics simulations. Reactivation of [3Fe-4S]+-ACO2 by FXN was verified by activation assays and direct iron-dependent interaction was confirmed by protein-protein interaction ELISA and fluorescence spectroscopic assays. Multimer modeling and protein-protein docking predicted an ACO2-FXN complex where the metal ion binding region of FXN approaches the [3Fe-4S]+ cluster, supporting that FXN is a partner for reactivation of ACO2 upon oxidative cluster inactivation.


Assuntos
Proteínas de Ligação ao Ferro , Proteínas Ferro-Enxofre , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Oxirredução , Superóxidos/metabolismo , Aconitato Hidratase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica
9.
PLoS One ; 18(2): e0281439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735737

RESUMO

Acute kidney injury (AKI) is a serious and frequently observed disease associated with high morbidity and mortality. Weighted gene co-expression network analysis (WGCNA) is a research method that converts the relationship between tens of thousands of genes and phenotypes into the association between several gene sets and phenotypes. We screened potential target genes related to AKI through WGCNA to provide a reference for the diagnosis and treatment of AKI. Key biomolecules of AKI were investigated based on transcriptome analysis. RNA sequencing data from 39 kidney biopsy specimens of AKI patients and 9 normal subjects were downloaded from the GEO database. By WGCNA, the top 20% of mRNAs with the largest variance in the data matrix were used to construct a gene co-expression network with a p-value < 0.01 as a screening condition, showing that the blue module was most closely associated with AKI. Thirty-two candidate biomarker genes were screened according to the threshold values of |MM|≥0.86 and |GS|≥0.4, and PPI and enrichment analyses were performed. The top three genes with the most connected nodes, alanine-glyoxylate aminotransferase 2(AGXT2), serine hydroxymethyltransferase 1(SHMT1) and aconitase 2(ACO2), were selected as the central genes based on the PPI network. A rat AKI model was constructed, and the mRNA and protein expression levels of the central genes in the model and control groups were verified by PCR and immunohistochemistry experiments. The results showed that the relative mRNA expression and protein levels of AGXT2, SHMT1 and ACO2 showed a decrease in the model group. In conclusion, we inferred that there is a close association between AGXT2, SHMT1 and ACO2 genes and the development of AKI, and the down-regulation of their expression levels may induce AKI.


Assuntos
Injúria Renal Aguda , Glicina Hidroximetiltransferase , Animais , Ratos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Biomarcadores , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Glicina Hidroximetiltransferase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aconitato Hidratase/metabolismo
10.
Metallomics ; 15(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36702557

RESUMO

Iron regulatory proteins (IRPs) control the translation of animal cell mRNAs encoding proteins with diverse roles. This includes the iron storage protein ferritin and the tricarboxylic cycle (TCA) enzyme mitochondrial aconitase (ACO2) through iron-dependent binding of IRP to the iron responsive element (IRE) in the 5' untranslated region (UTR). To further elucidate the mechanisms allowing IRPs to control translation of 5' IRE-containing mRNA differentially, we focused on Aco2 mRNA, which is weakly controlled versus the ferritins. Rat liver contains two classes of Aco2 mRNAs, with and without an IRE, due to alterations in the transcription start site. Structural analysis showed that the Aco2 IRE adopts the canonical IRE structure but lacks the dynamic internal loop/bulge five base pairs 5' of the CAGUG(U/C) terminal loop in the ferritin IREs. Unlike ferritin mRNAs, the Aco2 IRE lacks an extensive base-paired flanking region. Using a full-length Aco2 mRNA expression construct, iron controlled ACO2 expression in an IRE-dependent and IRE-independent manner, the latter of which was eliminated with the ACO23C3S mutant that cannot bind the FeS cluster. Iron regulation of ACO23C3S encoded by the full-length mRNA was completely IRE-dependent. Replacement of the Aco23C3S 5' UTR with the Fth1 IRE with base-paired flanking sequences substantially improved iron responsiveness, as did fusing of the Fth1 base-paired flanking sequences to the native IRE in the Aco3C3S construct. Our studies further define the mechanisms underlying the IRP-dependent translational regulatory hierarchy and reveal that Aco2 mRNA species lacking the IRE contribute to the expression of this TCA cycle enzyme.


Assuntos
Ferro , Proteínas de Ligação a RNA , Animais , Ratos , Ferro/metabolismo , Proteínas de Ligação a RNA/química , Biossíntese de Proteínas , Ferritinas/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Conformação de Ácido Nucleico
11.
Int J Neurosci ; 133(1): 67-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33535005

RESUMO

We propose that neural damage in Parkinson's disease (PD) is due to dysregulation of iron utilization rather than to high iron levels per se. Iron deposits are associated with neuronal cell death in substantia nigra (SN) resulting in PD where high levels of iron in SNs are due to dysregulation of iron utilization. Cytosolic aconitase (ACO1) upon losing an iron-sulfur cluster becomes iron regulatory protein 1 (IRP1). Rotenone increases levels of IRP1 and induces PD in rats. An increase in iron leads to inactivation of IRP1. We propose a novel treatment strategy to prevent PD. Specifically in rats given rotenone by subcutaneous injections, iron, from iron carbonyl from which iron is slowly absorbed, given three times a day by gavage will keep iron levels constant in the gut whereby iron levels and iron utilization systematically can be tightly regulated. Rotenone adversely affects complex 1 iron-sulfur proteins. Iron supplementation will increase iron-sulfur cluster formation switching IRP1 to ACO1. With IRP1 levels kept constantly low, iron utilization will systematically be tightly regulated stopping dysregulation of complex 1 and the neural damage done by rotenone preventing PD.


Assuntos
Proteína 1 Reguladora do Ferro , Doença de Parkinson , Ratos , Animais , Proteína 1 Reguladora do Ferro/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Rotenona , Aconitato Hidratase/metabolismo , Ferro/metabolismo , Enxofre/metabolismo
12.
Enzyme Microb Technol ; 162: 110140, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36272242

RESUMO

Developing a microbial chassis with efficient enzymes is key to the synthesis of products by metabolic engineering. The wide distribution of desired pathway enzymes across several species and categories is posing major challenges in screening and selection of the same for pathway reconstruction. One such key enzyme is isopropylmalate isomerase (IPMI) of leucine/isoleucine biosynthetic pathway. The enzymes reported earlier as citraconase and maleate hydratase in Arthrobacter sp. and Pseudomonas sp. respectively, were found to have the characteristics of IPMI. If a systematic study is undertaken to show that these orphan enzymes indeed are part of the aconitase family of enzymes, these reported ones will add to the repertoire of enzymes available for branch-chained amino acid pathway engineering. This work is focused on functional characterisation of the enzymes citraconase and maleate hydratase based on the properties of IPMI. The partially sequenced gene of maleate hydratase reported earlier served as a template to identify the respective genes in these organisms which is found to be that of IPMI with conserved regions in the active site. The native enzymes and the IPMI of A. globiformis and P. pseudoalcaligenes, expressed in E. coli acted upon all the substrates in the forward direction comprising of D-citramalate, citraconate & D-erythro-3-methylmalate. In the reverse direction all the enzymes converted citraconate to D-citramalate with high activity. The estimated equilibrium ratio was same for both the native enzyme and the over-expressed IPMI which is 96:1.5:2.5 for D-citramalate: citraconate: D-erythro-3-methylmalate. The iron requirement for both enzymes which is characteristic of IPMI is ascertained by chelation and reconstitution of the same. Therefore, this work elucidated the broad specificity and the reactions in equilibrium catalysed by these enzymes like that of IPMI, paving way for the integration of these two efficient candidates into aconitase family of enzymes facilitating pathway engineering.


Assuntos
Aconitato Hidratase , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Aconitato Hidratase/química , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo
13.
Mol Cancer Res ; 21(1): 36-50, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36214668

RESUMO

The ability of a patient tumor to engraft an immunodeficient mouse is the strongest known independent indicator of poor prognosis in early-stage non-small cell lung cancer (NSCLC). Analysis of primary NSCLC proteomes revealed low-level expression of mitochondrial aconitase (ACO2) in the more aggressive, engrafting tumors. Knockdown of ACO2 protein expression transformed immortalized lung epithelial cells, whereas upregulation of ACO2 in transformed NSCLC cells inhibited cell proliferation in vitro and tumor growth in vivo. High level ACO2 increased iron response element binding protein 1 (IRP1) and the intracellular labile iron pool. Impaired cellular proliferation associated with high level ACO2 was reversed by treatment of cells with an iron chelator, whereas increased cell proliferation associated with low level ACO2 was suppressed by treatment of cells with iron. Expression of CDGSH iron-sulfur (FeS) domain-containing protein 1 [CISD1; also known as mitoNEET (mNT)] was modulated by ACO2 expression level and inhibition of mNT by RNA interference or by treatment of cells with pioglitazone also increased iron and cell death. Hence, ACO2 is identified as a regulator of iron homeostasis and mNT is implicated as a target in aggressive NSCLC. IMPLICATIONS: FeS cluster-associated proteins including ACO2, mNT (encoded by CISD1), and IRP1 (encoded by ACO1) are part of an "ACO2-Iron Axis" that regulates iron homeostasis and is a determinant of a particularly aggressive subset of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Ferro/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Proteínas de Ligação ao Ferro
14.
Microb Cell Fact ; 21(1): 275, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577997

RESUMO

BACKGROUND: Itaconic acid, an unsaturated C5 dicarbonic acid, has significant market demand and prospects. It has numerous biological functions, such as anti-cancer, anti-inflammatory, and anti-oxidative in medicine, and is an essential renewable platform chemical in industry. However, the development of industrial itaconic acid production by Aspergillus terreus, the current standard production strain, is hampered by the unavoidable drawbacks of that species. Developing a highly efficient cell factory is essential for the sustainable and green production of itaconic acid. RESULTS: This study employed combinatorial engineering strategies to construct Escherichia coli cells to produce itaconic acid efficiently. Two essential genes (cis-aconitate decarboxylase (CAD) encoding gene cadA and aconitase (ACO) encoding gene acn) employed various genetic constructs and plasmid combinations to create 12 recombination E. coli strains to be screened. Among them, E. coli BL-CAC exhibited the highest titer with citrate as substrate, and the induction and reaction conditions were further systematically optimized. Subsequently, employing enzyme evolution to optimize rate-limiting enzyme CAD and synthesizing protein scaffolds to co-localize ACO and CAD were used to improve itaconic acid biosynthesis efficiency. Under the optimized reaction conditions combined with the feeding control strategy, itaconic acid titer reached 398.07 mM (51.79 g/L) of engineered E. coli BL-CAR470E-DS/A-CS cells as a catalyst with the highest specific production of 9.42 g/g(DCW) among heterologous hosts at 48 h. CONCLUSIONS: The excellent catalytic performance per unit biomass shows the potential for high-efficiency production of itaconic acid and effective reduction of catalytic cell consumption. This study indicates that it is necessary to continuously explore engineering strategies to develop high-performance cell factories to break through the existing bottleneck and achieve the economical commercial production of itaconic acid.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Succinatos/metabolismo , Aconitato Hidratase/metabolismo
15.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430441

RESUMO

Tomato (Solanum lycopersicum) is one of the most cultivated vegetables in the world due to its consumption in a large variety of raw, cooked, or processed foods. Tomato breeding and productivity highly depend on the use of hybrid seeds and their higher yield, environmental adaption, and disease tolerance. However, the emasculation procedure during hybridization raises tomato seed production costs and labor expenses. Using male sterility is an effective way to reduce the cost of hybrid seeds and ensure cultivar purity. Recent developments in CRISPR genome editing technology enabled tomato breeders to investigate the male sterility genes and to develop male-sterile tomato lines. In the current study, the tomato Acotinase (SlACO) gene family was investigated via in silico tools and functionally characterized with CRISPR/Cas9-mediated gene disruption. Genome-wide blast and HMM search represented two SlACO genes located on different tomato chromosomes. Both genes were estimated to have a segmental duplication in the tomato genome due to their identical motif and domain structure. One of these genes, SlACO2, showed a high expression profile in all generative cells of tomato. Therefore, the SlACO2 gene was targeted with two different gRNA/Cas9 constructs to identify their functional role in tomatoes. The gene was mutated in a total of six genome-edited tomato lines, two of which were homozygous. Surprisingly, pollen viability was found to be extremely low in mutant plants compared to their wild-type (WT) counterparts. Likewise, the number of seeds per fruit also sharply decreased more than fivefold in mutant lines (10-12 seeds) compared to that in WT (67 seeds). The pollen shape, anther structures, and flower colors/shapes were not significantly varied between the mutant and WT tomatoes. The mutated lines were also subjected to salt and mannitol-mediated drought stress to test the effect of SlACO2 on abiotic stress tolerance. The results of the study indicated that mutant tomatoes have higher tolerance with significantly lower MDA content under stress conditions. This is the first CRISPR-mediated characterization of ACO genes on pollen viability, seed formation, and abiotic stress tolerance in tomatoes.


Assuntos
Infertilidade Masculina , Solanum lycopersicum , Masculino , Humanos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Aconitato Hidratase/metabolismo , Melhoramento Vegetal , Edição de Genes
16.
Sci Rep ; 12(1): 17484, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261501

RESUMO

Oxidant stress contributes significantly to the pathogenesis of bronchopulmonary dysplasia (BPD) in extremely low birth weight (ELBW) infants. Mitochondrial function regulates oxidant stress responses as well as pluripotency and regenerative ability of mesenchymal stem cells (MSCs) which are critical mediators of lung development. This study was conducted to test whether differences in endogenous MSC mitochondrial bioenergetics, proliferation and survival are associated with BPD risk in ELBW infants. Umbilical cord-derived MSCs of ELBW infants who later died or developed moderate/severe BPD had lower oxygen consumption and aconitase activity but higher extracellular acidification-indicative of mitochondrial dysfunction and increased oxidant stress-when compared to MSCs from infants who survived with no/mild BPD. Hyperoxia-exposed MSCs from infants who died or developed moderate/severe BPD also had lower PINK1 expression but higher TOM20 expression and numbers of mitochondria/cell, indicating that these cells had decreased mitophagy. Finally, these MSCs were also noted to proliferate at lower rates but undergo more apoptosis in cell cultures when compared to MSCs from infants who survived with no/mild BPD. These results indicate that mitochondrial bioenergetic dysfunction and mitophagy deficit induced by oxidant stress may lead to depletion of the endogenous MSC pool and subsequent disruption of lung development in ELBW infants at increased risk for BPD.


Assuntos
Displasia Broncopulmonar , Células-Tronco Mesenquimais , Recém-Nascido , Lactente , Humanos , Displasia Broncopulmonar/etiologia , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Células-Tronco Mesenquimais/metabolismo , Apoptose , Metabolismo Energético , Oxidantes/metabolismo , Aconitato Hidratase/metabolismo , Proteínas Quinases/metabolismo , Peso ao Nascer
17.
Food Res Int ; 160: 111741, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076423

RESUMO

Apples (cv. Golden Delicious) were used as the materials to investigate methyl jasmonate (MeJA) dipping on quality parameters, organic acids metabolism and GABA shunt during storage at 21 ± 1 °C and 75 ± 5 % relative humidity. Results demonstrated that MeJA treatment reduced mass loss, respiratory intensity and ethylene release, and maintained higher flesh firmness and soluble solid content of apples. MeJA also decreased malic acid content, increased succinic and tartaric acids contents, and inhibited cytoplasmic aconitase (Cyt-ACO), NADP-malate (NADP-ME), phosphoenolpyruvate dehydrogenase (PEPC), mitochondrial citrate synthase (Mit-CS), glutamate dehydrogenase (GAD), and GABA transferase (GABA-T) activities in apples. NADP-isocitrate dehydrogenase (NADP-IDH), mitochondrial cis-aconitase (Mit-ACO), and cytoplasmic NAD-malate dehydrogenase (CytNAD-MDH) activities in apples were also enhanced by MeJA dipping. Moreover, MeJA dipping enhanced MdCytNAD-MDH and MdNADP-IDH expressions, and down-regulated MdGAD, MdGABA-T, MdNADP-ME, MdPEPC, MdCyt-ACO and MdMit-CS expressions in apples. These results suggest that MeJA dipping can maintain storage quality of "Golden Delicious" apples by regulating organic acids metabolism and GABA shunt.


Assuntos
Malus , Acetatos , Aconitato Hidratase/metabolismo , Ciclopentanos , Frutas/metabolismo , Malus/metabolismo , NADP/metabolismo , Oxilipinas , Ácido gama-Aminobutírico
18.
Metab Eng ; 73: 256-269, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987434

RESUMO

The chemolithotroph Cupriavidus necator H16 is known as a natural producer of the bioplastic-polymer PHB, as well as for its metabolic versatility to utilize different substrates, including formate as the sole carbon and energy source. Depending on the entry point of the substrate, this versatility requires adjustment of the thermodynamic landscape to maintain sufficiently high driving forces for biological processes. Here we employed a model of the core metabolism of C. necator H16 to analyze the thermodynamic driving forces and PHB yields from formate for different metabolic engineering strategies. For this, we enumerated elementary flux modes (EFMs) of the network and evaluated their PHB yields as well as thermodynamics via Max-min driving force (MDF) analysis and random sampling of driving forces. A heterologous ATP:citrate lyase reaction was predicted to increase driving force for producing acetyl-CoA. A heterologous phosphoketolase reaction was predicted to increase maximal PHB yields as well as driving forces. These enzymes were then verified experimentally to enhance PHB titers between 60 and 300% in select conditions. The EFM analysis also revealed that PHB production from formate may be limited by low driving forces through citrate lyase and aconitase, as well as cofactor balancing, and identified additional reactions associated with low and high PHB yield. Proteomics analysis of the engineered strains confirmed an increased abundance of aconitase and cofactor balancing. The findings of this study aid in understanding metabolic adaptation. Furthermore, the outlined approach will be useful in designing metabolic engineering strategies in other non-model bacteria.


Assuntos
Cupriavidus necator , Aconitato Hidratase/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Formiatos/metabolismo , Frutose/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Termodinâmica
19.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166530, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36038039

RESUMO

Macrophages undergo extensive metabolic reprogramming during classical pro-inflammatory polarization (M1-like). The accumulation of itaconate has been recognized as both a consequence and mediator of the inflammatory response. In this study we first examined the specific functions of itaconate inside fractionated mitochondria. We show that M1 macrophages produce itaconate de novo via aconitase decarboxylase 1 (ACOD1) inside mitochondria. The carbon for this reaction is not only supplied by oxidative TCA cycling, but also through the reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase (IDH). While macrophages are capable of sustaining a certain degree of itaconate production during hypoxia by augmenting the activity of IDH-dependent reductive carboxylation, we demonstrate that sufficient itaconate synthesis requires a balance of reductive and oxidative TCA cycle metabolism in mouse macrophages. In comparison, human macrophages increase itaconate accumulation under hypoxic conditions by augmenting reductive carboxylation activity. We further demonstrated that itaconate attenuates reductive carboxylation at IDH2, restricting its own production and the accumulation of the immunomodulatory metabolites citrate and 2-hydroxyglutarate. In line with this, reductive carboxylation is enhanced in ACOD1-depleted macrophages. Mechanistically, the inhibition of IDH2 by itaconate is linked to the alteration of the mitochondrial NADP+/NADPH ratio and competitive succinate dehydrogenase inhibition. Taken together, our findings extend the current model of TCA cycle reprogramming during pro-inflammatory macrophage activation and identified novel regulatory properties of itaconate.


Assuntos
Carboxiliases , Ciclo do Ácido Cítrico , Isocitrato Desidrogenase , Succinatos , Aconitato Hidratase/metabolismo , Animais , Carbono/metabolismo , Carboxiliases/metabolismo , Citratos , Retroalimentação , Humanos , Ácidos Cetoglutáricos/metabolismo , Camundongos , NADP/metabolismo , Succinato Desidrogenase/metabolismo , Succinatos/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(35): e2204752119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994673

RESUMO

p38γ and p38δ (p38γ/p38δ) regulate inflammation, in part by controlling tumor progression locus 2 (TPL2) expression in myeloid cells. Here, we demonstrate that TPL2 protein levels are dramatically reduced in p38γ/p38δ-deficient (p38γ/δ-/-) cells and tissues without affecting TPL2 messenger ribonucleic acid (mRNA) expression. We show that p38γ/p38δ posttranscriptionally regulates the TPL2 amount at two different levels. p38γ/p38δ interacts with the TPL2/A20 Binding Inhibitor of NF-κB2 (ABIN2)/Nuclear Factor κB1p105 (NF-κB1p105) complex, increasing TPL2 protein stability. Additionally, p38γ/p38δ regulates TPL2 mRNA translation by modulating the repressor function of TPL2 3' Untranslated region (UTR) mediated by its association with aconitase-1 (ACO1). ACO1 overexpression in wild-type cells increases the translational repression induced by TPL2 3'UTR and severely decreases TPL2 protein levels. p38δ binds to ACO1, and p38δ expression in p38γ/δ-/- cells fully restores TPL2 protein to wild-type levels by reducing the translational repression of TPL2 mRNA. This study reveals a unique mechanism of posttranscriptional regulation of TPL2 expression, which given its central role in innate immune response, likely has great relevance in physiopathology.


Assuntos
Aconitato Hidratase , MAP Quinase Quinase Quinases , Proteína Quinase 12 Ativada por Mitógeno , Proteína Quinase 13 Ativada por Mitógeno , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...